Neuro-Fuzzy Shadow Filter
نویسندگان
چکیده
In video sequence processing, shadow remains a major source of error for object segmentation. Traditional methods of shadow removal are mainly based on colour difference thresholding between the background and current images. The application of colour filters on MPEG or MJPEG images, however, is often erroneous as the chrominance information is significantly reduced due to compression. In addition, as the colour attributes of shadows and objects are often very similar, discrete thresholding cannot always provide reliable results. This paper presents a novel approach for adaptive shadow removal by incorporating four different filters in a neuro-fuzzy framework. The neurofuzzy classifier has the ability of real-time self-adaptation and training, and its performance has been quantitatively assessed with both indoor and outdoor video sequences.
منابع مشابه
A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملAdaptive Interference Signal Processing with Intelligent Neuro-Fuzzy Approach
An intelligent learning-based approach using neural network and fuzzy logic to the problem of interference canceling is proposed in the paper. The famous signal-processing structure of adaptive noise canceling is used for the research of interference signal canceling, in which a neuro-fuzzy system is used as the adaptive notch filter. Four T-S fuzzy rules are in the neuro-fuzzy filter. The filt...
متن کاملImage Denoising Using A New Hybrid Neuro- Fuzzy Filtering Technique
Digital images are often contaminated by impulse noise during image acquisition and/or transmission over communication channel. A new Hybrid Neuro-Fuzzy (HNF) filter for restoring digital images corrupted by impulse noise is proposed in this paper. The proposed filter is a hybrid filter obtained by aptly combining a Nonlinear Filter (NF), Canny Edge Detector (CED) and an Adaptive Neuro-Fuzzy In...
متن کاملSpeech Signal Filters based on Soft Computing Techniques: A Comparison
The paper presents a comparison of various soft computing techniques used for filtering and enhancing speech signals. The three major techniques that fall under soft computing are neural networks, fuzzy systems and genetic algorithms. Other hybrid techniques such as neuro-fuzzy systems are also available. In general, soft computing techniques have been experimentally observed to give far superi...
متن کاملFault Modeling, Detection and Classification using Fuzzy Logic, Kalman Filter and Genetic Neuro-Fuzzy Systems
In this paper, an efficient scheme has been proposed to model, detect and classify the fault. The modeling of fault has been proposed with the fuzzy logic using membership function. Fault detection of the unprecedented changes in system reliability and find the failed component state by classifying the faults is proposed using kalman filter and hybrid neurofuzzy computing techniques respectivel...
متن کامل